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Abstract
Fisheries management is generally based on the regulation of the fishing effort, by limiting fishing capacity and activity. The 
fishing capacity can be quantified objectively, however, the calculation of the fishing activity requires knowing the effective 
fishing time, for which it is essential to monitor the vessels activity. The European Vessel Monitoring System (VMS) only 
describes the geographical position, course and speed of the vessel at 2-h intervals, it is an expensive system used only in 
vessels over 12 m in length and there are no common criteria to infer the fishing activity from the VMS data. To evaluate 
more precisely the fishing activity, we propose to incorporate new sensors in the vessels that provide additional information. 
The sensors of mobile devices offer an economic solution that would allow their implementation throughout the fishing 
fleet. The objective of this work is to evaluate whether the most common sensors integrated in current mobile devices: GPS, 
accelerometer, gyroscope, and magnetic field, offer relevant information to identify the different phases of bottom trawling 
fishing activity. The results obtained indicate that these sensors detect, with very high precision, foreseeable changes in the 
movement of the vessel during the towing manoeuvre.

Keywords  Vessel monitoring system · Mobile device · Sensor · Trawl fishing · Ship’s behaviour

1  Introduction

The sustainable exploitation of fishery resources is based 
on the use of common indicators to measure fishing activ-
ity [1]. The European Union, under the Common Fisheries 
Policy, continuously analyses how to improve the fishing 
capacity and effort indicators of its fishing fleet [2]. The 

fishing capacity can be objectively quantified from the ves-
sels’ technical characteristics and the fishing gears; however, 
the calculation of the fishing activity requires knowing the 
effective fishing time [3]. Therefore, an accurate estimate of 
the fishing effort requires knowing the time when the fish-
ing gear is working, for which it is essential to monitor the 
vessels’ activity.

With the aim of improving the effectiveness and effi-
ciency of monitoring, control and surveillance of fishing 
activity, the European Union regulated in 2009 the use of 
vessel monitoring system (VMS) [4]. Thus, from January 
1, 2012, every vessel with a total length of more than 12 m 
has a VMS transmitter installed, which provides each State 
Fishing Monitoring Centre with real-time information on 
the geographical position, course and speed of the vessel.

VMS data have become an indispensable tool to research 
on the control and planning of fishing activity [5, 6]. For 
example, they have been used to complete and verify the 
information provided by the electronic recording and report-
ing system (ERS) and to establish spatial and temporal maps 
of fishing activity, to study patterns of fishermen’s behav-
iour [7] as well as to accurately assess the vessels’ trajecto-
ries [8–14]. Several authors such as Lee [15] and Szostek 
[16] have developed and validated fishing effort estimation 
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methods based on the recorded VMS data in United King-
dom vessels. On the other hand, Marzuki [17] used the VMS 
data for the monitoring and identification of unauthorised 
fishing activities. In this sense, Gerritsen [5] analysed the 
effects on CPUE (catch per unit of effort) of the seasonal 
closure of cod (Gadus morhua) from the VMS data. Cur-
rently the information provided by the VMS is available on 
platforms such as those developed in the Global Fishing 
Watch projects whose purpose is to provide a tool that allows 
governments, fishery management organisations, scientists, 
private industry, and non-governmental organisations to 
implement rules and regulations that will ensure a sustain-
able and abundant ocean (www.globa​lfish​ingwa​tch.org).

Despite the undoubted advantages of the availability and 
use of VMS data, there are certain aspects that hinder to 
interpret the information they provide. In the first place, 
as indicated in [4], the installation of transponders is only 
mandatory for vessels with a length exceeding 12 m, so that 
the information coming from a large part of the artisanal 
fleet is not available. On the other hand, the information 
transmitted is relatively scarce since the devices send data 
with a very low frequency (intervals of at least 2 h) lim-
iting the reliability and precision of the obtained results. 
Likewise, the use of the VMS data for the determination 
of trajectories, spatial and temporal fishing maps, and esti-
mation of the fishing effort requires a validation with the 
auxiliary information provided by the logbooks and/or the 
on board observers reports [11]. Another VMS deficiency is 
that it does not provide information on the state of the sea to 
assess its influence on the trawl gear performance [18] and 
improve the fishing effort estimation. In addition, the VMS 
only provides the vessel’s speed over the ground and does 
not report the vessel’s true speed over the surface, obtaining 
erroneous results in areas with high sea currents. Therefore, 
we think that to evaluate fishing effort more accurately, it is 
necessary to develop new devices that provide better quality 
information and whose cost favours their implementation 
throughout the fishing fleet.

Considering that the presence of an active trawl gear 
affects the dynamic behaviour of the vessel, as it is affirmed 
and mathematically modelled by Sun [19], a device equipped 
with sensors and sufficient processing capacity could record 
the movement of the vessel and identify the different phases 
of fishing activity. This task could be carried out by a 
mobile device (tablet or Smartphone), thanks to the sen-
sors it usually incorporates, its high processing capacity and 
facility for the development of specific applications (APP). 
At present, there are many fishing APPs, most of them for 
sport fishing, which take advantage of the sensors potential 
to georeference the fishing activity. For example, Fishing 
Status (https​://play.googl​e.com/store​/apps/detai​ls?id=com.
Fishi​ngSta​tus) is an application that provides resources and 
information (local fishing reports and hotspots with GPS 

coordinates) around 100 miles of the current device location. 
For its part, Fishing Log (https​://play.googl​e.com/store​/apps/
detai​ls?id=com.WebAn​dPrin​t.FishD​iary) is a logbook appli-
cation that uses the GPS to georeference the information. 
Therefore, from the technical point of view, we consider 
it interesting to explore the use of mobile devices on the 
control and planning of fishing activity.

The objective of this work is to evaluate if the most com-
mon sensors integrated in current mobile devices: GPS, 
accelerometer, gyroscope and magnetic field are capable of 
offering relevant information that allows the identification 
of the different phases of fishing activity.

2 � Materials and methods

2.1 � Mobile device, sensors, variables and data

Nowadays, most mobile phones and tablets incorporate GPS, 
accelerometer, gyroscope and magnetic field sensors. In this 
work, we used a Samsung SM-P600 tablet with a 6-axis 
inertial sensor (Bosch Sensortec BMI055) consisting of a 
digital tri-axial 12 bit acceleration sensor and a digital tri-
axial 16 bit gyroscope, a 3-axis electronic 16 bit compass 
sensor (Asahi Kasei Microdevices AK8963C) and a GPS 
receiver. From these sensors, a total of 11 variables can be 
obtained with a sampling period ranging from 50 ms to 1 s 
(Table 1).

The accelerometer measures the acceleration applied to 
the device ( ������⃗Ace ). Conceptually, it does so by measuring 
forces (F) applied to the mass of the sensor. In particular, 
the force of gravity ( ⃗G ) is always influencing the measured 
acceleration (Eq. 1). By immobilising the device on the ves-
sel, it moves in solidarity with the vessel, so the mass of the 
equation corresponds to the sum of the mass of the device 
plus that of the vessel and this term can be disregarded and 
consider that the accelerometer will record the components 
of the gravity vector ( ⃗G ) at each instant:

The gyroscope measures, in radians per second (rad/s), 
the rotation speed around the axes OX, OY and OZ being 
positive, when the rotation around the axis is made in the 
anticlockwise direction seen by an observer located in a 
positive location of the axis.

For its part, the magnetic field sensor measures, in micro-
Teslas (μT), the magnetic field in the device environment. 
The sensor provides the vector components resulting from 
the vector sum of the earth’s magnetic field and the magnetic 
field generated by the objects in the environment (motors, 
wiring, etc.) (Eq. 2):

(1)������⃗Ace = −G⃗ −
��������⃗
∑

F∕Mass ≈ −G⃗.
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Finally, the GPS (global positioning system) sensor is 
capable of recording information about its three-dimensional 
geographic location in the form of latitude, longitude and 
height based on a satellite network. It also registers a tempo-
rary mark of the measurement and generates additional pro-
cessed information such as course and instantaneous speed, 
average speed and precision. In this work, it has only been 
considered necessary to store the bearing (GpsR) and the 
instantaneous speed (GpsV) every second during the vessel 
activity.

2.2 � The mobile application

A mobile application (APP) has been developed to record 
the vessel’s movement during its fishing activity. The inte-
grated development environment (IDE) Android Studio has 
been used to implement the APP on the Android platform. 
The user interface allows to start the recording and to select 
the haul phase. Once the recording has begun, the inter-
face shows the data recorded by the sensors numerically 
and graphically. In addition, it incorporates a configuration 
menu with data about the ship, the mobile device and the 
fishing gear. During the recording, the data provided by the 
sensors, linked to the haul phase, ship’s information, fish-
ing gear and mobile device, are temporarily stored in a local 
database (SQLite).

The communication with the mobile device is done 
through a REST API (“Application Programming Interface 
for the Representational State Transfer”) service. When 
the mobile device has a connection to the server, it sends 
the information temporarily stored in its database and the 
server stores it in a MySql database (Fig. 1). The server 
allows access to information through the REST API service 
or through the WEB service using the RStudio application 
(Fig. 2).

(2)�������⃗Mag = ��������������⃗MagEarth +
�����������������⃗MagEnviron.

Table 1   Main characteristics of 
the sensors used, description of 
the recorded physical parameter, 
data generation interval of each 
sensor (sampling period) and 
variables extracted from each 
parameter

Sensor Measured parameter Sampling period Variable

Acceleration Linear acceleration vector 50 ms AceX
 Range = ± 19.6133 m/s2 AceY
 Sensitivity = 0,009570 m/s2 AceZ

Gyroscope Rotation speed around the three axes 50 ms GirX
 Range = ± 8.7266 rad/s GirY
 Sensitivity = 0.0002661 rad/s GirZ

Magnetic field Vector of the magnetic field 50 ms MagX
 Range = ± 4900 µT MagY
 Sensitivity = 0.6 µT MagZ

GPS Bearing 1 s GpsR
Speed GpsV

Fig. 1   Structure of the relational database that stores the data 
recorded by the sensors of the mobile device. The accelerometer table 
contains the acceleration applied to the mobile device (vector {x,y,z}) 
and the instant (time) in which it has been recorded. The gyroscope 
table contains the rotation speed around the three axes (vector 
{x,y,z}) of the mobile device and the instant (time) in which it was 
recorded. The magnetic field table contains the magnetic field around 
the mobile device (vector {x,y,z}) and the instant (time) in which it 
has been recorded. The GPS table contains the position (latitude and 
longitude), bearing and speed of the vessel and the instant (time) in 
which it has been recorded. The activity table contains the descrip-
tion of the four different activities of the vessel: shipping, setting, 
towing and hauling. The boats table contains the description of the 
fishing vessels involved in the study. The devices table contains the 
description of the mobile device used. The fishing gear table contains 
the description of the fishing gear used. Table haul contains the reg-
istered haul number. The event table allows to relate each data stored 
in the accelerometer, gyroscope, magnetic field and GPS tables to the 
activity, haul number, fishing vessel, fishing gear and mobile record-
ing device

Author's personal copy
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2.3 � Case study

The initial execution of the prototype was carried out on 
the fishing and oceanographic research vessel Miguel Oli-
ver [20] of the General Fisheries Secretariat of Spain, with 
one length of 70.00 m, beam of 14.40 m, draft of 6.50 m, 
gross register tonnage of 2.495 GT, maximum speed of 14 
knots and equipped with a small draft trawl GOC-73 with 
Morguere doors. The data survey was performed in 2016 
during the MEDITS-ES [21] survey conducted annually by 
the Spanish Institute of Oceanography (IEO) to evaluate 
demersal resources along the continental shelf and slope of 
the Spanish Mediterranean coast from May 27 to June 5, 
2016 in the coasts of Castellón, Tarragona, Barcelona and 
Gerona (Fig. 3). During the campaign, the ship movement 
was recorded along 22 trawl hauls, at 3 knots speed, distrib-
uted in 20 sets of 30 min in depths from 50 to 200 m, two 
sets of 60 min in depth greater than 200 m and an average 
capture of 60 kg. In each set, it was recorded at least 15 min 
before the haul (shipping), the complete periods of setting, 
towing and hauling, and 15 min shipping after the haul.

To record as accurately as possible, the roll and pitch of 
the ship, the device was placed on the bridge about 18 m 
above the ship’s centre of gravity, crossing point of the pitch 
and roll axes [22]. Special interest was placed on the orien-
tation of the device as the sensors offer vector information 
referenced to the coordinate axes linked to the screen, plac-
ing the axis OY parallel to the longitudinal axis (stern-bow), 
the axis OX parallel to the transverse axis (port-starboard) 
and the OZ axis parallel to the vertical axis (Fig. 4).

2.4 � Data analysis

From the information recorded by the sensors and stored 
in the database, the data table was made by estimating the 
mean (Xm) and the standard deviation (Xs) in 1-min periods, 

Fig. 2   Mobile application user interface and information flow

Fig. 3   Spatial distribution of the 22 hauls recorded along the coast of 
Castellón, Tarragona, Barcelona and Gerona (Spain)

Fig. 4   Location of the mobile device on the bridge of the oceano-
graphic vessel
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thus obtaining 22 independent quantitative continuous vari-
ables. Likewise, a nominal qualitative independent vari-
able named Activity composed of four categories (shipping, 
shooting the gear, towing and hauling the gear) was created. 
The data table was formed by 22 variables with 2453 data 
divided into 1140 shipping, 262 during the gear shooting, 
786 towing and 265 during the gear hauling.

The data analysis focused on identifying the changes in 
the static and dynamic vessel behaviour during the haul, in 
identifying the sensors capable of measuring those changes, 
in locating the quantitative variables to be used to recog-
nise said changes, and in analysing the variables behaviour 
in the different haul phases. Each quantitative variable was 
analysed using the kurtosis and Fisher’s asymmetry coef-
ficients, the Shapiro–Wilk test to contrast the normality, the 
box and density plots by haul phase to observe differences, 
their median and interquartile range by haul phase to detect 
differences in its central value and dispersion, its coefficient 
of variation of the absolute deviation of the median (MAD) 
to discard unrepresentative variables and the non-parametric 
test of Kruskall–Wallis to confirm the differences between 
the median values by haul phase. Likewise, quantitative vari-
ables were standardised to compare them with each other. 
The statistical package RStudio was used to perform all the 
analyses.

3 � Results

This section shows the obtained results from the data table 
variables related to the trim of the ship and the four degrees 
of freedom of movement affected by the start of the haul and 
susceptible to be registered by the available sensors: pitch, 
roll, yaw and surge.

3.1 � Trim

The presence of an active fishing gear causes changes in the 
ship’s trim, modifying the angle formed by its longitudinal 
axis with the horizontal plane. The accelerometer is the sen-
sor capable of recording information about the ship’s orien-
tation. The variables AceXm, AceYm and AceZm represent 
the mean gravity vector components and provide information 
on the ship’s orientation with respect to the horizontal plane. 
The projection of the gravity vector on the centreline plane, 
represented by the variables AceYm and AceZm, makes it 
possible to evaluate the longitudinal angle of the ship trim.

The variable AceYm showed a value of kurtosis (β = 4.27) 
and a p value of the Shapiro–Wilk test (p < 0.001) that sug-
gested that the data did not adjust to a normal distribution. 
The Kruskall–Wallis test (p < 0.001) showed the existence 
of significant differences in its central value and dispersion 
between activities. During the set, their median increased 

by 42% and their interquartile range was reduced by 58% 
(Table 2, Fig. 5). On the other hand, AceZm presented a 
clearly non-normal behaviour (γ = 2.74, β = 21.58, Shap-
iro–Wilk test p < 0.001) and its density by activity showed 
the absence of significant differences in its central value and 
dispersion (Kruskall–Wallis test p = 0.749) (Table 2; Fig. 6).

3.2 � Roll and pitch

Pitch and roll movements are originated by external forces 
such as waves, wind, etc. In both cases, the vessel describes 
the rotational movements around its transverse and longitu-
dinal axis, causing the alternate rise and fall of the bow and 
stern or of the port and starboard bands. The presence of 
an active fishing gear causes the displacement of the vessel 
mass centre (crossing point of the transverse and longitudi-
nal axes) and modifies the pitch and roll movements. The 
accelerometer, gyroscope and magnetic field sensors detect 
these changes.

The accelerometer showed higher values of the coeffi-
cient of variation in AceXs, AceYs and AceZs. Like AceZm, 
the deviations associated with the three axes of the accel-
erator present behaviours with non-normal distributions. In 
AceXs and AceZs (Kruskall–Wallis AceXs test p < 0.001; 
Kruskall–Wallis AceYs test p = 0.168; Kruskall–Wallis 
AceZs test p < 0.001) (Table 2; Figs. 7, 8).

The gyroscope measures the speed of rotation around the 
X, Y and Z axes. The sensors orientation on the ship indicates 
that the variable GirX records the pitch movement and the 
variable GirY the roll movement. In particular, the GirXs 
and GirYs variables of the data table must change in the 
variability or dispersion of the pitch and roll rotation speed. 
The GirXs and GirYs components showed a non-normal 
behaviour and at least one of them (GirYs) pointed out the 
possibility of differentiating the navigation from the towing, 
shooting and hauling activities (Kruskall–Wallis GirYs test 
p < 0.001) (Table 2; Fig. 9), however, GirXs did not present 
any difference between the four activities (Kruskall–Wallis 
test GirXs p = 0.198).

For its part, the magnetic field sensor measures in micro-
Teslas (μT), the magnetic field in the environment of the 
device. Therefore, all the components of the vector that reg-
ister the sensor (MagX, MagY and MagZ) and particularly 
the variables MagXs, MagYs and MagZs are likely to show 
the pitch and roll changes in the different haul phases. The 
Shapiro–Wilk tests indicate that none of the three variables 
presented a normal distribution. However, a comparison of 
medians showed differences between the central value and 
the dispersion between shipping and towing activities in 
the variables MagXs, MagYs (Kruskall–Wallis MagXs test 
p < 0.001) (Table 2, Figs. 10 and 11) and to a lesser extent 
in the variable MagZs.

Author's personal copy



	 Journal of Marine Science and Technology

1 3

3.3 � Yaw

The yaw movement is a rotation oscillatory movement 
around the ship OZ axis that causes small changes in the 
course of the vessel. The sensors capable of recording the 
yaw are the gyroscope, the magnetic field sensor and the 
GPS.

The Z component of the gyroscope measures the speed of 
rotation around the OZ axis and the variable GirZs records 
the magnitude of the course changes during the fishing activ-
ity. The GirZs data had a clearly asymmetric distribution 
(γ = 3.59) that caused the Shapiro–Wilk test to be highly 
significant (p < 0.001). Likewise, it showed a high variability 
around its median, which was reflected in the level of sig-
nificance of the Kruskall–Wallis test (p < 0.001) (Table 2, 
Fig. 12).

In turn, the magnetic field sensor X and Y components 
are the most sensitive ones to the ship yaw along with 
the variables described in the previous section MagXs and 
MagYs that reflect its magnitude.

The GPS sensor provided also information on ves-
sel the course and speed. GpsRs is the more sensitive to 
yaw variable. This variable showed a high variability of 
92% around its median (Table 2). The density diagram 
(Fig. 13) showed significant differences in its central value 
and dispersion among activities (Kruskall–Wallis test 
p < 0.001). Its median decreased by 16% in the shooting 
phase, increased by 53% in the towing phase and by 160% 
in the hauling phase.

Table 2   Statistical summary of the 22 variables under study

The variable with subscript m represents the average of the data generated by the sensor in periods of 1 min. The variable with subscript s repre-
sents the standard deviation of the data generated by the sensor in periods of 1 min. For each variable, the table includes the number of samples 
(N), the mean, the median, the standard deviation (SD), the Pearson’s Coefficient of Variation (CV_Pearson), the median absolute deviation 
(MAD), the coefficient of variation of the median absolute deviation (CV_MAD), the minimum value (min), the maximum value (max), the 
range of values (range), the skewness, the kurtosis and the p val of the Kruskal–Wallis normality test (Kr.Wallis p val) double

AceXm AceYm AceZm GirXm GirYm GirZm MagXm MagYm MagZm GpsRm GpsVm

N 2453 2453 2453 2453 2453 2453 2453 2453 2453 2453 2453
Mean − 1.0302 0.0412 9.8941 − 0.0001 0.0003 0.0000 − 29.2530 60.0077 − 15.2240 140.8623 4.9530
Median − 1.0420 0.0440 9.8940 0.0000 0.0000 0.0000 − 33.5270 65.4720 − 16.0900 114.2770 3.4580
SD 0.0692 0.0162 0.0121 0.0005 0.0005 0.0027 11.6915 15.1598 3.0334 103.6299 2.9446
CV_Pearson 0.0672 0.3932 0.0012 4.7825 1.4049 62.8112 0.3997 0.2526 0.1992 0.7357 0.5945
MAD 0.0667 0.0163 0.0074 0.0000 0.0000 0.0000 12.7593 17.3242 2.8807 116.2092 1.5879
CV_MAD 0.0640 0.3707 0.0007 − − − 0.3806 0.2646 0.1790 1.0169 0.4592
Min − 1.4660 − 0.0420 9.8300 − 0.0040 − 0.0010 − 0.0270 − 50.0170 34.9760 − 20.8220 2.6130 0.0580
Max − 0.6170 0.0870 9.9930 0.0020 0.0020 0.0240 − 6.8830 81.2610 − 7.5720 356.0770 10.3920
Range 0.8490 0.1290 0.1630 0.0060 0.0030 0.0510 43.1340 46.2850 13.2500 353.4640 10.3340
Skewness 0.3780 − 0.8532 2.7354 − 1.7448 0.7071 0.0192 0.4113 − 0.3437 0.6319 0.5513 0.6494
Kurtosis 4.2573 4.2739 21.5804 14.2086 1.6542 36.7724 1.6587 1.5022 2.4319 2.0463 1.9805
Kr.Wallis p val 0.1177 0.0000 0.7489 0.0158 0.9760 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

AceXs AceYs AceZs GirXs GirYs GirZs MagXs MagYs MagZs GpsRs GpsVs

N 2453 2453 2453 2453 2453 2453 2453 2453 2453 2453 2453
Mean 0.0872 0.0680 0.0645 0.0039 0.0032 0.0019 0.4904 0.5637 0.4417 7.6063 0.2339
Median 0.0680 0.0540 0.0490 0.0030 0.0020 0.0020 0.3290 0.4030 0.3940 1.0430 0.0690
SD 0.0568 0.0395 0.0450 0.0019 0.0020 0.0013 0.7251 0.7283 0.3198 22.0062 0.4935
CV_Pearson 0.6516 0.5815 0.6973 0.4818 0.6135 0.6631 1.4785 1.2921 0.7240 2.8931 2.1097
MAD 0.0356 0.0297 0.0282 0.0015 0.0015 0.0015 0.0593 0.0771 0.1097 0.9563 0.0474
CV_MAD 0.5233 0.5491 0.5749 0.4942 0.7413 0.7413 0.1803 0.1913 0.2785 0.9169 0.6876
Min 0.0180 0.0090 0.0150 0.0020 0.0010 0.0010 0.2330 0.2820 0.2540 0.1040 0.0000
Max 0.4170 0.2610 0.3350 0.0130 0.0150 0.0140 16.2410 16.8470 11.6380 179.0620 4.3130
Range 0.3990 0.2520 0.3200 0.0110 0.0140 0.0130 16.0080 16.5650 11.3840 178.9580 4.3130
Skewness 1.8170 1.2624 1.9776 1.0152 1.9266 3.5891 9.6756 9.3140 20.9884 4.8946 4.5567
Kurtosis 6.9348 4.2777 7.8477 3.5099 7.5787 23.9303 140.6254 139.7816 653.1549 29.7713 28.2055
Kr.Wallis p val 0.0000 0.1677 0.0000 0.1977 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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3.4 � Surge

The study of the surge speed during the different fishing 
activity phases focuses on analysing the average speed and 
speed stability against external forces. In this way, the sen-
sor that measures the surge speed is the GPS and GpsVm 
is the variable to show the average speed evolution. This 
variable clearly discriminates between the navigation and 
the rest of the activity phases and this was reflected in 
significant differences of its central value and dispersion 
(Table 2; Fig. 14).

On the other hand, the surge stability is characterised by the 
variable GpsVs (speed variability). The analysis of this vari-
able indicated that both, the asymmetry and kurtosis coeffi-
cients, were out of range (γ = 4.56, β = 28.21). A Shapiro–Wilk 
test (p < 0.001) confirmed that the data did not show a normal 
distribution. The variable showed a high variability of 69% 
around its median (Table 2). The activity density (Fig. 15) 
and the Kruskall–Wallis test (p < 0.001) showed significant 
differences in their central value and dispersion among the 
activities. Its median decreased by 24% in the towing phase 
and increased by 125% in the shooting phase and by 62% in 

Fig. 5   Tukey boxplots and density by activity of the variable AceYm

Fig. 6   Tukey boxplots and density by activity of the variable AceZm

Fig. 7   Tukey boxplots and density by activity of the variable AceXs

Fig. 8   Tukey boxplots and density by activity of the variable AceZs
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the hauling phase. Its interquartile range decreased by 33% in 
the towing phase and increased by 267% in the shooting phase 
and by 93% in the hauling phase.

4 � Discussion

Significant progress in data collection involves the acquisi-
tion of this information for all vessels, including those that 
are not required to have a VMS system installed, for which it 

is essential to develop effective, low-cost and easy-to-install 
systems. Faced with the high cost of current VMS devices, 
the solution we propose for each fishing vessel is a mobile 
device running a specific APP and a modem that allows its 
connection to a satellite network. In the coastal fleet, the 
cost can be reduced if the communication is done through 
the mobile phone network or using the WiFi network, when 
arriving at the port. The estimation of the cost has been cal-
culated using a medium-range mobile phone and an Iridium 

Fig. 9   Tukey boxplots and density by activity of the variable GirYs

Fig. 10   Tukey boxplots and density by activity of the variable 
MagXs. Logarithmic scale was used on the OX axis

Fig. 11   Tukey boxplots and density by activity of the variable 
MagYs. Logarithmic scale was used on the OX axis

Fig. 12   Tukey boxplots and density by activity of the variable GirZs. 
Logarithmic scale was used on the OX axis
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modem with worldwide coverage, obtaining an estimated 
cost of 700 € for local equipment and 400 €/year of mainte-
nance and data transmission. These numbers contrast with 
the current costs of the VMS for deep-sea fishing of 3500 € 
for local equipment and 800 €/year of maintenance, or the 
costs for coastal fishing such as the SLSEPA system of 1400 
€ for local equipment and 1200 €/year of maintenance [23].

To evaluate if the sensors of mobile devices have the 
necessary sensitivity to record changes in the movement 
of the vessel when the trawl is active, we found the most 

unfavourable test environment, where these changes were 
minimal. The effect of the trawl fishing gear on the vessel 
depends on the size of the vessel, the size of the fishing gear 
and the volume of catch dragged [19]. On the one hand, the 
larger the vessel, the smaller the movement due to wind and 
waves. On the other hand, the smaller the fishing gear and 
the volume of catch with respect to the size of the vessel, 
the smaller its effect on the vessel and the differences in 
the dynamic behaviour of the vessel between each phase 
of the fishing set will be smaller. The oceanographic ves-
sel Miguel Oliver during the Medits campaign meets these 
requirements, it is a large vessel equipped with a small sam-
pling trawl, executing during the campaign sets of short 
duration and with a small volume of catch. A commercial 
trawler usually offers more favourable conditions for sensors 
to record differences in their dynamic behaviour during the 
set. Therefore, we can state that the results presented in this 
paper can be applied to most of the trawl fishing fleet. These 
results are analysed below.

4.1 � Trim

During the set, the fishing gear is towed by two cables 
located on both sides of the stern of the vessel, each one 
exerting a pulling force on the vessel that causes changes in 
its the static and dynamic behaviour [19]. This force appears 
when the gear is released, increases during the trawling 
phase and is maximal when the trawling speed increases 
during the hauling phase. The vertical component of these 
forces causes a progressive ship centre of mass displacement 
aft and consequently an increase in the ship seat.

Fig. 13   Tukey boxplots and density by activity of the variable GpsRs. 
Logarithmic scale was used on the OX axis

Fig. 14   Tukey boxplots and density by activity of the variable GpsVm

Fig. 15   Tukey boxplots and density by activity of the variable GpsVs. 
Logarithmic scale was used on the OX axis

Author's personal copy



	 Journal of Marine Science and Technology

1 3

4.2 � Pitch and roll

When a ship is in equilibrium position, the centre of buoy-
ancy (point through which the force of buoyancy support-
ing the vessel acts vertically upwards) and the centre of 
gravity (point through which all of the weight of the vessel 
acts vertically downwards) are in the same vertical axis. 
When an external force inclines the ship, the submerged 
part of the hull is modified; the centre of the hull moves 
and a righting pair that opposes this inclination is gener-
ated [22, 24].

The presence of a fishing gear increases the righting 
torque and reduces the vessel pitch and roll [19]. In both 
movements, there are variations in speed and drag that cause 
an additional centre of masses displacement increasing its 
distance from the centre of the hull.

Our results show that the accelerometer, gyroscope and 
magnetic field sensors were able to detect a decrease in the 
pitch and roll level during the haul. In the case of the accel-
erometer, the variables AceXs and AceZs reflected a sig-
nificant reduction in their median and interquartile range. 
On the other hand, the GirYs gyroscope variable reflected a 
reduction of its median and interquartile range. Finally, the 
MagXs and MagYs magnetic field sensor variables recorded 
a reduction in its median and interquartile range during the 
towing phase.

4.3 � Yaw

The yaw movement is a rotation oscillatory movement 
around the ship’s OZ axis that causes small changes in the 
vessel’s course. A starboard turn accelerates the port drag 
line and slows the starboard line, causing an imbalance in 
the drag forces that opposes the ship’s turn. A turn to port 
provokes the same effect. As a result, during the haul, the 
yaw movement is reduced and the ship’s course remains 
more stable [19].

The gyroscope, the magnetic field sensor and the GPS 
have been able to detect the reduction of the yaw angle dur-
ing haul. In the case of the gyroscope, the GirZs variable 
has shown a reduction in the towing phase in its median and 
interquartile range. As mentioned in the previous section, 
the MagXs and MagYs variables of the magnetic field sen-
sor have also shown greater stability on the course during 
the haul. Finally, the results obtained with the GPS indicate 
that the variable shows small reductions of its median and 
a significant reduction of its interquartile range between the 
shipping and towing phases. During the setting and hauling 
phases, there is an increase of this movement due to the 
fact that in these phases, there are usually course changes to 
orient the vessel to the haul that will begin or to direct the 
vessel to the next fishing zone.

4.4 � Surge

The study of the ship speed during the different fishing activ-
ity phases focuses on analysing the average speed reached 
voluntarily by acting on the propulsion system and observ-
ing the stability of the desired speed against external forces 
(waves, gusts of wind, etc.).

The variable GpsVm reflected, in each haul phase, veloc-
ity values similar to those found in other studies for trawl 
fishing [15, 17, 25], with medians of 8.4 knots shipping, 4.5 
knots setting, 3 knots towing and 2.1 knots hauling. Further-
more, the expected variability of the speed is reflected in its 
interquartile ranges of 5.7 knots shipping, 1.2 knots setting, 
0.16 knots towing and 1.4 knots hauling.

During the haul, small variations in speed cause changes 
in the drag force that opposes to the speed change. The trawl 
net shock absorbing effect allows the vessel to maintain a 
more stable forward speed [19]. The analysis of the variable 
GpsVs data shows that the speed value and speed variation 
are lower in the towing phase than in the shipping phase. 
During the set and haul phases, the speed varies voluntar-
ily, which justifies an increase in the GpsVs median and 
dispersion.

5 � Conclusions

Processing data into information and information into 
knowledge to optimise the decision-making process is one 
of the great challenges facing the managing bodies that plan 
the exploitation of fishery resources. In this context, the 
VMS system has become a relevant source of data, boost-
ing research on the fishing activity control and planning as 
can be seen in Gerritsen [5] and Jennings [6]. In spite of this, 
the scarce information offered by the VMS system limits 
its future.

Analysing the results of this article, the proposal to use in 
the future, a mobile-like device to overcome the VMS sys-
tems seems more viable. As a first step, we have verified that 
the sensors of a mobile device are capable of detecting sig-
nificant differences in the movement of the vessel, as stated 
and mathematically modelled by Sun [19]. The experience 
was realised under very unfavourable conditions, in a large 
tonnage oceanographic vessel, with a small fishing gear, a 
small catch volume, and in weather conditions that did not 
cause large movements of the vessel. In spite of this, the 
sensors of the mobile device recorded a progressive increase 
in the ship’s seat, a reduction in the angle of balance, pitch 
and yaw, and an increase in the stability of surge and speed 
values according to the haul phase.

In short, the results of this work indicate that the mobile 
device’s sensors have been able to detect, with a very high 
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accuracy level, the foreseeable changes in the movement of 
the vessel during the trawling manoeuvre.

6 � Software availability

Name of software: FAMIS. Developers: Galotto-Tebar, 
M.M. Hardware requirements: Mobile device with Android 
5.1 or higher. Programming languages: Java. Availability: 
The programme will be available up on request to Ms. Maria 
del Mar Galotto-Tebar.
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Highlights: 
European fishing ships are controlled by a vessel monitoring system (VMS). 
FAMI system exceeds in reliability and accuracy the current VMS 
The mobile’ sensors can be used by learning machines to predict fishing events.
Multilayer perceptrons identified correctly 96.26% of the fishing events. 



Table 1. Sensors used: main characteristics, data generation interval of each sensor 

(sampling period) and variables extracted from each sensor)

Sensor Range Sensitivity
Sampling 

period
Variable

Acceleration ±19.6133 m/s2 0,009570 m/s2 50 ms AceX AceY AceZ

Gyroscope ±8.7266 rad/s 0.0002661 rad/s 50 ms GirX GirY GirZ

Magnetometer ±4900 μT 0.6 μT 50 ms MagX MagY MagZ

GPS - - 1 s GpsR GpsV



Table 2. Accuracy, precision, recall and F1 score (expressed as percentages) in the 

final test of the LDA, MLP, PNN and SVM learning machines. This analysis 

included the samples recorded during all categories of activity with all their 

attributes. 

Activity Accuracy Precision Recall F1 Score

LDA

Steaming 73.63 47.66 55.73 51.38

Setting 77.82 61.07 31.11 41.22

Towing 80.30 62.76 52.14 56.96

Hauling 78.76 55.05 82.05 65.89

MLP

Steaming 72.15 46.96 70.17 55.93

Setting 80.00 73.00 32.43 43.66

Towing 87.24 71.46 81.97 76.26

Hauling 87.60 78.66 69.42 73.51

PNN

Steaming 76.88 54.26 47.86 50.86

Setting 71.88 37.10 17.95 24.19

Towing 68.08 40.24 57.09 47.21

Hauling 71.45 44.16 53.68 48.46

SVM

Steaming 83.80 99.05 35.56 52.33

Setting 86.45 76.69 65.81 70.84

Towing 68.59 44.20 97.61 60.84

Hauling 84.83 84.23 48.38 61.45



Table 3. F1 score (expressed as a percentage) in the final test of the LDA, MLP, PNN and 

SVM learning machines. The samples are included with all their attributes. 1-vs-1 includes 

samples from two categories. 1-vs-Rest includes all the samples, maintaining the category on 

the left and grouping the other categories in the Rest category. 

Type of partition LDA MLP PNN SVM

1-vs-1

Steaming-vs-Setting 59.37 35.58 69.48   44.82 34.46   68.11 57.65   73.77

Steaming-vs-Towing 74.34   77.12 84.94   85.04 51.52   75.39 63.56   78.87

Steaming-vs-Hauling 79.77   84.01 85.12   86.42 58.25   76.27 66.59   79.97

Setting-vs-Towing 90.66   91.05 92.49   91.84 25.89   70.14 87.24   88.58

Setting-vs-Hauling 95.21   95.22 94.14   94.47 81.59   83.44 93.81   93.17

Towing-vs-Hauling 81.23   80.28 66.37   75.58 75.88   54.79 84.83   79.27

1-vs-Rest

Steaming-vs-Rest 69.43  63.15 75.85   67.77 48.51 73.05 61.26   71.79

Setting-vs-Rest 46.09   65.88 53.16   72.90 73.12   60.32 62.08   69.30

Towing-vs-Rest 60.54   61.67 88.72   88.54 69.60   22.46 71.03   34.95

Hauling-vs-Rest 80.09   70.55 81.84   79.71 74.73   64.62 77.48   61.32



Table 4. F1 score (expressed as a percentage) for the towing category in the final test of 

the LDA, MLP, PNN and SVM learning machines with all the attributes and after 

reducing the number of categories. The results without a reduction and with 3 and 2 

categories. The symbol “>” written between two categories indicates that the category on 

the left is merged with that on the right, the label of the samples of the category on the 

left being changed to that of the one on the right.

Activity LDA MLP PNN SVM

Steaming-Setting-Towing-Hauling

Unreduced 56.96 76.26 47.21 60.84

Steaming-Towing-Hauling

Setting > Steaming 57.14 73.77 55.70 64.81

Setting > Towing 55.16 68.13 58.70 67.06

Steaming-Setting-Towing

Hauling > Steaming 41.64 71.15 55.06 18.88

Hauling > Towing 77.75 84.48 64.95 71.16

Steaming-Towing

Setting > Steaming / Hauling > Steaming 55.47 77.51 70.72 71.05

Setting > Steaming / Hauling > Towing 85.38 87.34 76.18 79.42

Setting > Towing / Hauling > Steaming 44.98 73.97 69.41 53.75

Setting > Towing / Hauling > Towing 76.42 77.81 76.02 79.35



Table 5. Accuracy, precision, recall and F1 score (expressed as percentages) for the 

towing category in the final tests of the LDA, MLP, PNN and SVM learning machines, 

with all the categories and after reducing attributes grouped by sensors. The results 

are shown before reduction (Ace-Gry-Mag-GPS) and after reduction using the set of 

sensors that provided the best F1 score for the Towing phase. The attributes were 

grouped by sensors as follows: Ace = (AceXm, AceXs, AceYm, AceYs, AceZm, 

AceZs), Gir = (GirXm, GirXs, GirYm, GirYs, GirZm, GirZs), Mag = (MagXm, 

MagXs, MagYm, MagYs, MagZm, MagZs) and Gps = (GpsRm, GpsRs, GpsVm, 

GpsVs).

Sensors Accuracy Precision Recall F1 Score

LDA

Ace-Gir-Mag-Gps 80.30 62.76 52.14 56.96

Ace-Gir-Gps 82.35 60.29 86.15 70.94

MLP

Ace-Gir-Mag-Gps 87.24 71.46 81.97 76.26

Gir-Gps 88.62 74.39 83.37 78.57

PNN

Ace-Gir-Mag-Gps 68.08 40.24 57.09 47.21

Gps 66.67 42.55 95.21 58.82

SVM

Ace-Gir-Mag-Gps 68.59 44.20 97.61 60.84

- - - - -



Table 6. Accuracy, precision, recall, F1 score and Kappa index for the towing 

category in the final test of the LDA, MPL, PNN and SVM learning machines. The 

results are shown before reduction (all activities/all sensors) and after the reduction in 

categories and attributes grouped by sensors that provide the best F1 scores in the 

towing phase.

Activities/Sensors Accuracy Precision Recall F1 Score Kappa

LDA

All activities / All sensors 80.30 62.76 52.14 56.96 0.60

Steaming-Towing / Ace-Gir-Gps 84.02 76.78 97.52 85.92 0.73

MLP

All activities / All sensors 87.24 71.46 81.97 76.26 0.70

Steaming-Towing / Gir-Gps 89.69 85.11 96.26 90.33 0.83

PNN

All activities / All sensors 68.08 40.24 57.09 47.21 0.34

Steaming-Towing / Gps 74.19 66.45 97.69 79.10 0.54

SVM

All activities / All sensors 68.59 44.20 97.61 60.84 0.56

Steaming-Towing / All sensors 70.04 62.66 99.23 76.81 0.52















Figure Captions 

Figure 1. FAMIS user interface installed in a smart phone and information flow. 

Figure 2. K-fold cross-validation process. The samples from the table of data (Data) are 

split into training data (Train - T) to be used in the cross-validation process and test data 

(Test) to be used in the final model assessment. The 5-fold cross-validation process 

calculates the mean of the results from repeating the model training and validation 

process five times. Each process uses different data, ensuring that all the data have been 

used once in the validation phase. 

Figure 3. Artificial neuron. It sums the inputs (xi) multiplied by the weight associated 

with each one (wi), adds the bias (b) and applies the activation function (f).

Figure 4. Architecture of the multi-layer perceptron neural network. Input layer with n

neurons that receive input attributes (xn). Hidden layers composed of a variable number 

of layers and neurons. Output layer that provides the response of the neural network 

(oj). The lines represent the connections that transmit the data between layers. 

Figure 5. Architecture of the probabilistic neural network. Input layer with n neurons 

that receive input attributes (xn). Pattern layer with one neuron per sample.  Summation 

layer with one neuron per class. Output layer with one neuron providing the output of 

the neural network.  

Figure 6. Graphical representation of the hyperplane used by the support vector 

machine to discriminate samples of different classes. Support vectors show which 

samples are closest to the hyperplane and define the edge of the margin. 

Figure 7. Graphical representation of the prediction of 4 hauls of the LDA, MLP, PNN 

and SVM models. The orange area represents the real hauls, the blue dots the steaming

prediction and the red dots the towing prediction. 
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Abstract 17

18

Knowing the activity of fishing vessels accurately and in real time means a leap in quality 19

in the management of fishing activity. This paper presents the development of a new 20

fishing activity monitoring integral system (FAMIS) that can complement and overcome 21

the limitations of current fishing vessel monitoring systems (VMS). FAMIS is developed 22

on the basis of a low-cost mobile device with GPS sensors, accelerometer, gyroscope and 23

magnetic field and integrates different statistical methods (discriminant functions) and 24

heuristics (artificial neural networks and vectorial support machines) as techniques to 25

classify the information recorded by the sensors of a mobile device during fishing activity. 26

The results obtained with FAMIS indicate that, in general, heuristics have a high degree 27

of discrimination of each of the phases of fishing operation and that, in particular, 28

multilayer perceptrons (MLPs) are capable of correctly identifying 96.3% of towing 29

phases using only GPS and gyro sensors.30

31

Keywords 32

33

Vessel monitoring system; mobile device; sensor; trawl fishing; ship’s behavior; machine 34

learning35

36

1. Introduction37

38



2

For the exploitation of living aquatic resources to be sustainable, there is a need to limit 39

the impact of fishing fleets on marine ecosystems. To assess the impact of a fishing vessel 40

during its activity, we use the concept of fishing effort defined as fishing capacity 41

multiplied by the duration of fishing activity (EC, 2007). Fishing capacity can be 42

quantified from the vessel’s technical characteristics and the fishing gear used. On the 43

other hand, assessment of the duration of fishing activity requires knowledge of the time 44

during which the fishing capacity of a vessel is effectively operated, a parameter which 45

is highly variable and specific to each type of fisheries and fishing operation. Therefore, 46

to reliably identify the duration of activity of a vessel, we need to have information,47

beyond just the time spent at sea, that allow us to track the activity of a fishing vessel.48

49

In 1995, the European Commission undertook a pilot project to assess the functionality 50

and costs of various satellite systems that might make it possible to continuously track51

the position and activity of fishing vessels. The result of this pilot was the implementation,52

in 2000, of a Vessel Monitoring System (VMS) with the goal of improving the 53

management and monitoring of fishing activity. Specifically, all fishing vessels 24 m 54

long were required to use the VMS, this requirement being extended to vessels 15 m in 55

2003 and those 12 m in 2012 (EC, 2009). Data provided by the VMS (the vessel’s 56

geographical position, course and speed) are transmitted every hour to the Spanish57

Fisheries Monitoring Centre where all this information is stored and shared 58

internationally in real time with parties in whose waters European vessels operate.59

60

Based on the information provided by the VMS, several authors have proposed actions 61

and protocols to strengthen the monitoring and planning of fishing activity (Gerritsen and 62

Lordan, 2011; Gerritsen et al., 2012; Jennings and Lee, 2012), a large proportion of 63

published studies having focused on estimating fishing effort (Rijnsdorp et al, 1998; Deng64

et al., 2005; Murawski et al., 2005; Salthaug and Johannessen, 2006; Walter et al., 2007; 65

Fock, 2008; Hintzen and Brunel, 2008). Nonetheless, despite the large amount of 66

information provided by the VMS and the indisputable advantages of its analysis for 67

monitoring the fishing fleet, the long sampling period, the limited information provided 68

in each sample and the exclusion of the coastal fleet limit the reliability and accuracy of 69

the estimations that can be obtained from this information (Russo et al, 2016).70

71
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To overcome these limitations, there is a need for new devices and/or monitoring 72

procedures. For example, the Location and Track System for Andalusian Fishing Vessels73

(SLSEPA), also known as the “green box” system (Junta de Andalucia, 2004) developed 74

by the regional government of Andalusia (Spain) uses the GPRS mobile network to 75

transmit data on location, course and speed of the artisanal fisheries to a control centre at 76

3-min intervals. The higher sampling rate improves the accuracy of the estimation of 77

fishing effort and spatial distribution of the fleet and the low data transmission costs make 78

the system feasible and operative for vessels <12 m long of the artesanal fleets (Cojan79

and Burgos, 2015). Despite SLSEPA representing a significant improvement, however, 80

this type of system still relies on assigning the type of activity based on the recorded speed81

alone (Lee et al., 2010; Burgos et al., 2013).82

83

We intend to develop a new fisheries monitoring system that will provide better quality 84

information and at a low cost to facilitate their deployment across the entire fishing fleet. 85

Considering that fishing gear in operation has an effect on the dynamic behaviour of a 86

vessel (Sun et al., 2011; Russo et al, 2011) and that the manoeuvres of a vessel may be 87

related to its fishing activity, a device equipped with positioning and movement sensors 88

could potentially provide the information necessary to accurately determine when a vessel 89

is fishing.90

91

Previous research has found that the sensors that are usually used in smart mobile devices 92

such as mobile phones and tablets (GPS, accelerometer, gyroscope and compass) are 93

capable of accurately detecting likely changes in the dynamic behaviour of a vessel during 94

each trawl phase (Galotto-Tebar et al., 2020). On the other hand, the processing capacity 95

of these devices enables us to include machine learning algorithms (artificial intelligence)96

that are able to learn about the dynamic behaviour of a vessel during the different phases 97

of operation and identify the activity of a fishing vessel in real time, at any time.98

99

Along these lines, some authors have succeeded in using various learning machines to 100

classify a situation or recognise movements of objects or people based on data provided 101

by movement sensors from smart mobile devices (Rodríguez-Martín et al., 2013; Tian et 102

al., 2019; Cust et al., 2019). In this paper we have selected four supervised machine 103

learning classification techniques: linear discriminant analysis (LDA) used to classify 104

linearly separable samples, multilayer perceptron (MLP) and support vector machine 105
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(SVM) used to classify non-linearly separable samples and Bayesian classifier or 106

probabilistic neural network (PNN). The selected classifiers are commonly used in 107

various fields such as livestock (Rodero et al., 2012), fisheries (Bertrand et al., 2008; 108

Czerwinski et al., 2007; Gutiérrez-Estrada et al., 2000, 2007, 2008, 2010; Queirolo et al., 109

2012; Robotham et al., 2010), hydraulic management (Pulido-Calvo and Portela, 2007), 110

economics (Pérez-Ramírez and Fernández-Castaño, 2007), quality control (Gutierrez and111

Vázquez, 2013), etc.112

113

Given this, the aims of this study were first to assess the viability of a range of statistical 114

and heuristic methods as tools to classify the data retrieved by sensors on a mobile device 115

during fishing activity, and secondly, to test their ability to identify which trawl phase a116

fishing vessel is in at a given time.117

118

2. Material and Methods 119

120
The models developed in this paper works with the Fishing Activity Monitoring Integral 121

System (FAMIS) (Galotto-Tebar et al., 2020). FAMIS is a mobile application (APP) 122

developed with Android Studio that records the vessel’s movement during its fishing 123

activity. During the recording, the data provide by the sensors of devices like smart 124

phones and tablets are temporarily stored in a local database (SQLite) linked the fishing 125

phase, ship’s informations and fishing gear. When the mobile device connects to a server, 126

it sends the information to a MySql database. The server allows access to information 127

through the REST API service which allows to analyse the data using RStudio application 128

(Figure 1).129

130

2.1. Mobile device and sensors 131

132
In this study, we used a Samsung SM-P600 tablet with movement sensors that include as 133

standard: 6-axis inertial measurement unit (Bosch Sensortec BMI055) composed of a 134

digital triaxial 12-bit acceleration sensor and a digital triaxial 16-bit gyroscope, a 16-bit 135

3-axis magnetometer (Asahi Kasei Microdevices AK8963C) and a GPS receptor. Using 136

these sensors and sampling periods of 50 ms and 1 s, data were collected on 11 different 137

variables (Table 1).138

139
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With the acceleration sensor, we measured the acceleration (݁ܿܣሬሬሬሬሬሬሬ⃗ ) of the mobile device 140

while it is moving, this movement being produced when there are external forces on the 141

device, the value recorded being the force acting on the mass of the sensor. Once the 142

mobile device is attached to the vessel’s structure, we can say that the movement of the 143

device reflects that of the vessel. One of the forces always involved in the movement and 144

hence in the acceleration recorded by the sensor is gravity (G) (Equation 1). In this145

equation, the mass is the sum of the mass of the device and that of the vessel; this term 146

can be ignored and we can consider that the accelerometer will record the components of 147

the gravity vector (⃗ܩ) at each point.148

149 ሬሬሬሬሬሬሬ⃗݁ܿܣ  = ܩ⃗ −   − ሬሬሬሬሬሬ⃗ܨ∑ ≈ ݏݏܽܯ / ܩ⃗ −  (1) 150

151

With the gyroscope sensor, we measure the speed of rotation around the three main 152

coordinate axes: OX, OY and OZ in radians per second (rad/s). If an observer placed on153

the positive side of an axis detects that the rotation around the axis is anticlockwise, the 154

speed of rotation will be positive and when the rotation is clockwise, the speed of rotation 155

will be negative.156

157

With the magnetometer, we measure the Earth's magnetic field and the magnetic field 158

around the device, in microTesla (μT). This sensor obtains the vector sum of the Earth’s159

magnetic field and the magnetic fields generated by objects around the device such as 160

engines, cables, etc., and provides the vector components resulting from the sum along161

OX, OY and OZ axes (Equation 2):162

163 ሬሬሬሬሬሬሬሬሬ⃗݃ܽܯ  = ா௔௥௧௛ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗݃ܽܯ   + ா௡௩ప௥௢௡ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗݃ܽܯ  (2) 164

165

Using a network of satellites, the global positioning system sensor measures the 3-D 166

geographical position of the device, providing values for latitude, longitude and altitude. 167

The sensor also records the timepoint of the measurement and is able to process these 168

data and generate new information indicating the course, instantaneous and mean 169

velocity, and accuracy. For this study, we have only considered it relevant to record the 170

course (GpsR) and instantaneous speed (GpsV) every second during the activity of the 171

vessel.172
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173

2.2. Data collection 174

175
Data were collected from the fishing and oceanographic research vessel Miguel Oliver of 176

the Spanish General Secretariat for Fisheries, between 28 May and 1 June 1, 2016 in the 177

waters off Castellón, Tarragona, Barcelona and Girona, during the Mediterranean 178

International Trawl Survey (MEDITS)-Spain bottom trawl survey. This survey is179

undertaken annually by the Spanish National Institute of Oceanography (IEO), to assess 180

demersal fish stock along the continental shelf and slope in the Spanish Mediterranean 181

Sea (Bertrand et al., 2002).182

183

Seeking to record the position of a vessel as accurately as possible, the mobile device was184

placed in the navigation bridge at around 18 m above the centre of gravity of the boat at 185

the point where the pitch and roll axes intersect (Ibrahim and Grace, 2010), aligning the186

device with the OY axis parallel to the longitudinal axis (running from stern to prow), the 187

OX axis parallel to the transverse axis (running from port to starboard) and the OZ axis 188

parallel to the vertical axis. The vector information from the sensors is recorded with 189

respect to these coordinate axes. In relation to this, we previously developed a mobile 190

application (FAMIS) to allow users to activate sensors, select a vessel’s phase of hauling191

at each point in time and store the information recorded in a database (Galotto et al., 192

2020).193

194

We recorded the vessel’s movements during 22 trawl hauls using a GOC 73 sampling 195

gear with Morgère trawl doors at a speed of 3 knots, of which 20 were 30-minute hauls 196

at depths of 50 to 200 m and 2 were 60-minute hauls at depths greater than 200 m. We 197

divided the vessel’s fishing activity into four phases: steaming, setting, towing and 198

hauling, and recorded the start and end time of each phase of operation.199

200

2.3. Automated learning techniques   201

202
Automated machine learning refers to a set of techniques that allow computer systems 203

themselves to create algorithms that are able to analyse data and acquire the knowledge 204

necessary to carry out tasks such as predicting, classifying, ranking and decision making, 205

without the need for defining initial rules to facilitate these tasks. For this study, we 206
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selected four supervised automated learning classification techniques with very different 207

strategies: (i) linear discriminant analysis (LDA), a statistical technique that classifies 208

samples that are linearly separable and estimates the probability of being in each group; 209

(ii) support vector machines (SVMs) that classify nonlinearly separable samples using a210

geometric approach; (iii) multilayer perceptrons (MLPs) that are universal proxies of 211

nonlinear functions; and (iv) Bayesian classifiers or probabilistic neural networks 212

(PNNs).213

214

2.4. Data processing 215

216
The first step in data processing was filtering, to eliminate zeros and outliers in the data 217

recorded by the sensors. Next, we created 22 independent continuous quantitative 218

variables (attributes) with a mean (Xm) and standard deviation (Xs) of the data in 10-s219

periods, allowing sufficient time for the boat to complete half a pitch/roll cycle (Barras 220

and Derrett, 2012): For the Accelerometer, the mean and standard deviation were 221

recorded for the three axes, resulting in variables AceXm, AceXs, AceYm, AceYs, AceZm,222

and AceZs. Similar variables were recorded for the gyroscope (GirXm, GirXs, GirYm, 223

GirYs, GirZm, GirZs) and the Magnometer (MagXm, MagXs, MagYm, MagYs, MagZm, 224

MagZs). For the GPS the mean and standard deviation for the course and instanteneous 225

speed were recorded: GpsRm, GpsRs, GpsVm and GpsVs.226

227

We then created an independent nominal qualitative variable (label) called Activity to 228

identify the launch phase of each sample from the official MEDITS-2016 survey data. 229

The labelling of this variable follows a window-type criterion similar to that used by 230

O'Farrell with VMS samples (O'Farrell et al, 2017), assigning the most repeated value 231

during the 10 seconds prior to the sample.232

233

The table of labelled data was created by merging the 22 attributes and the label, removing 234

the records with at least one null, normalising attributes and balancing the samples by 235

activity. As a result, we obtained a total of 6184 samples (1546 samples per activity). 236

237

To evaluate the classification performance of each model, we divided the table of data 238

into two blocks: a training data set consisting of 3844 samples (62.16%) from the first 3239

days of the survey, covering a total of 15 hauls, and a test data set consisting of 2340 240
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samples (37.83%) from the last 2 days of the survey, during which 7 hauls were 241

completed. This procedure allows models to be trained and tested under different weather 242

conditions.243

244

2.5. Assessment metrics  245

246
The classification performance of each model is related to the number of hits and misses. 247

In this study, we used five specific metrics to assess the predictive power of the classifiers:248

249

Accuracy: Percentage of positive and negative predictions that are correct 250

251 ݕܿܽݎݑܿܿܣ =  (்௉ା்ே)(்௉ା்ேାி௉ାிே) × 100 (3) 252

253

Precision: Percentage of positive predictions that are correct   254

255 ݊݋݅ݏ݅ܿ݁ݎܲ =  ்௉(்௉ାி௉) × 100 (4) 256

257

Recall: Percentage of true positives retrieved   258

259 ܴ݈݈݁ܿܽ =  ்௉(்௉ାிே) × 100 (5) 260

261

F1 Score: Harmonic mean of precision and recall  262

263 ݁ݎ݋ܿܵ 1ܨ =  ଶ∗௉௥௘௖௜௦௜௢௡∗ோ௘௖௔௟௟(௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟) (6) 264

265

where TP stands for True Positive, the number of fishing sets correctly predicted to be a 266

member of a class, TN for True Negative, the number of fishing sets correctly predicted 267

to not be a member of a class, FP for False Positive, the number of fishing set incorrectly 268

predicted to be a member of a class, and FN for False negative, the number of fishing sets269

incorrectly predicted to not be a member of a class.270

271
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Kappa index:  Measure of the degree of agreement between the classifier's prediction and 272

the true classification (Cohen, 1960)273

274 ܽ݌݌ܽܭ =  ௣೚ି௣೐ଵି௣೐ (7) 275

276

where po is the probability of success of the classifier and pe is the probability of success 277

of a random classifier.278

279

2.6. Model hyperparameter tuning 280

281
Automated learning models are parameterised in order that their behaviour can be 282

adjusted to fit a given problem. These models can have multiple parameters and finding 283

the optimal combination of values sometimes requires in-depth analysis that is beyond 284

the scope of this paper. In this study, we selected the values for each parameter using a285

grid search procedure for hyperparameters, establishing a discrete range of values for 286

each parameter and creating a grid with all the possible combinations of hyperparameters 287

to methodically assess all the resulting models. The best model was selected based on 288

using the F1 score to compare the model’s performance.289

290

To avoid choosing hyperparameters of the model that best fit the test data set, the 291

validation process uses different data to train and validate each configuration, saving the 292

test data set for the final assessment of the model. The validation of each configuration 293

of the model was carried out using k-fold cross-validation resampling (Burman, 1989) 294

(Figure 2). To avoid overly small data sets, we used K=5. Having selected the parameters 295

that provided the best results in the validation process, the model was trained with all the 296

training data and then the classification performance is assessed with the test data. 297

298

2.7. Simplification of the model  299

300
The samples recorded during the vessel’s fishing activity reflect the influence of trawling 301

on the dynamic behaviour of the vessel. Galotto et al. (2020) demonstrated that the 302

sensors of a mobile device were capable of identifying four distinct periods labelled:303

steaming, setting, towing and hauling. The task of the models used in this study is to 304

classify the samples into one of these four categories. We should recall that the main 305
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objective of this study is to identify the start and end of trawling to obtain real-time 306

information on fishing, and hence, the efficacy in recognising the samples taken during 307

the towing phase is key to achieving this objective. The remaining phases could 308

potentially be merged, thereby reducing the number of phases, if, by doing so, we improve 309

the performance of the model when classifying the towing category. In relation to this, 310

we validated the models with 4, 3, and 2 categories, always keeping the towing category.311

312

The inclusion of too many attributes of samples may lead to learning machines 313

performing the classification task less well. Given that each attribute is linked to a sensor, 314

and in some cases, to the orientation of the mobile device with respect to the vessel, we 315

grouped the attributes by sensor, and analysed the response of the four learning machines 316

to all of the potential reductions in the group of attributes.317

318

2.8. Machine learning 319

320
2.8.1.Linear discriminant analysis (LDA) 321

322
Linear discriminant analysis (LDA) is a supervised learning algorithm used for data 323

classification and dimension reduction. Based on a dependent qualitative variable and a 324

set of independent quantitative variables, discriminant analysis allows samples to be325

classified into one of the groups established by the dependent variable.326

327

This type of analysis provides classification procedures for new observations with an 328

unknown origin into one of the groups analysed, by providing discriminant scores from 329

which we can estimate the probability of being in each group. For this, the algorithm uses330

new variables known as discriminant variables that are able to characterise and 331

differentiate between groups, described using discriminant functions which are linear 332

combinations of the original variables. More detailed descriptions of the method can be 333

found in Kim et al. (2007), Berstein et al. (2019) and Li et al. (2020).334

335

2.8.2.Artificial neural networks: multilayer perceptrons (MLPs) and probabilistic neural 336

networks (PNNs)337

338
Artificial neural networks are mathematical models inspired by the neural architecture of 339

the human brain (Rumelhart et al, 1986). To create an artificial neural system, we use 340
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artificial neurons functionally organised in layers. The information flows through the 341

layers of the neural network via one-way connections that simulate the synapses between 342

neurons. Each connection has an associated weight (wi) equivalent to the synapse 343

strength, and each input (xi) through this connection is multiplied by this weight. The 344

receptor neurone calculates the weighted sum of all the inputs, adds a numerical value 345

known as bias (b) and applies an activation function to the result (f) to determine the 346

output (Figure 3).347

348

In particular, multilayer perceptrons (MLPs) are one-way neural networks formed by an 349

input layer with as many neurons as there are input attributes, one or several hidden layers 350

with a variable number of neurons and output layer with the number of neurons required 351

to show the output (Figure 4). The data flow in one direction from the input layer towards 352

the output layer. The outputs from each neuron of the input layer and hidden layers are 353

connected to the input neurons of the following layer. MPLs are able to analyse complex354

data sets and perform nonlinear classification into two or more groups, and given this, 355

have been widely used in a range of technical applications (Lek and Guegan, 1999; 356

Gutiérrez-Estrada et al., 2000; Dedecker et al., 2005; Goethals et al., 2007; Pulido-Calvo 357

and Portela, 2007; Gutiérrez-Estrada et al., 2008).358

359

On the other hand, probabilistic neural networks (PNNs) are Bayes-Parzen classifiers 360

composed of four layers: an input layer with the same number of neurons as input 361

attributes; a first hidden layer, which is a pattern layer with the same number of neurons 362

as training or calibration samples; a second hidden layer, which is a summation layer with 363

the same number of neurons as classes; and an output layer, with a neuron that provides 364

the result of the classification (Figure 5) (Specht and Specht, 1990; Hajmeer and Basheer, 365

2002; Rodero et al., 2012).366

367

When we supply an input to the PNN, the pattern layer assesses the distances from the 368

input vector to the training vectors using a vector of distances, the elements of which 369

indicate how close the input is to each training input. The summation layer (the second 370

layer) sums the patterns of each class generating a vector of probabilities which is then371

used by a competitive transfer function at the output layer to select the most probable 372

class (Pérez-Ramírez and Fernándo-Castaño, 2007).373

374
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2.8.3.Support Vector Machine 375

376
The support vector machine (SVM) are statistical classifiers proposed by Vapnik (1995) 377

that belong to a family of linear classifiers. SVMs seek to identify hyperplanes that divide 378

the input feature space. At the algorithmic level, SVM learning is modelled as a quadratic 379

optimisation problem with linear constraints, the size of the problem depending on the 380

dimension of the feature space (Figure 6). While markedly less popular than the 381

aforementioned models, they have been used in a range of applications and shown a 382

discriminatory power similar to that of MLPs (Robotham et al., 2010; Rodero et al., 383

2012).384

385

2.9. Calibration and validation procedures  386

387
The construction of learning machine models starts with the processes of validation (k-388

fold cross-validation) and parameter section allowing adaption of their behaviour to the 389

problem to be solved. In the case of the LDA modelling, given the use of balanced 390

samples, the initial probability of class membership is the same for all the classes. In MLP 391

modelling, the following were selected: a hidden layer with 8 neurons, a maximum of 30 392

iterations of learning, Randomize_Weights(0,1) as the initialization function, 393

Std_Backpropagation(0.2,0) as the learning function, Topological_Order(0) as the update 394

function, and Act_Logistic as the activation function of all hidden units and all output 395

units. As the initialisation function assigns random initial weights, producing small 396

differences between the models, we calculated the mean of 10 training and testing runs 397

of the MLP. In the PNN modelling, a value of 1.4 was set as the smoothing parameter for 398

the pattern-layer activation function. Lastly, in the SVM modelling, we chose a linear 399

kernel and set the constraint violation cost to 1.400

401

For data processing, simulating the learning machines and obtaining the results, we used 402

the R programming language (https://www.r-project.org) with specific libraries to work 403

with learning machines such as Modern Applied Statistics with S (Ripley et al., 2020), R 404

Neural Networks using the Stuttgart Neural Network Simulator 405

(https://github.com/cbergmeir/RSNNS), probabilistic neural networks PNN (Chasset,406

2016) and Misc Functions of the Department of Statistics Probability Theory Group 407

(E1071; Meyer, 2019).408
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409

3. Results 410

411
Table 2 shows the results concerning the performance in the final test of the four learning 412

machines analysed in this study. 413

414

In general, MLPs and SVMs provided better results than LDA or PNNs. The best 415

harmonic mean between precision and recall (F1 scores) was obtained with the SVM 416

model, with a mean among the categories of 68.21% compared to the 65.41% observed 417

in the MLP model. Further, the SVM model was better than the MLP model in precision, 418

with a mean of 76.04% compared to 67.52%. In contrast, the MLP model was better in 419

terms of accuracy and sensitivity, with mean percentages of 81.75% and 63.50% 420

compared to 80.92% and 61.84% in the SVM model. On the other hand, the MLP model 421

provided more balanced results than the SVM one, with regards to classifying the samples 422

recorded during the trawling phase, with an accuracy of 87.24%, a precision of 71.46% 423

and an F1 score value of 76.26%. The SVM model only performed better than the MLP 424

model in terms of sensitivity, being able to identify 97.61% of the trawling activity 425

samples, at the expense of a very high number of false positives. We should highlight the 426

difficulties of the LDA, MLP and PNN models in identifying the setting category, these 427

only being able to recognise 31.11%, 32.43% and 17.95%, respectively, of the samples 428

recorded in this phase.429

430

Table 3 presents the ability of learning machines to distinguish samples from two fishing 431

phases. The analysis from using samples from two trawl phases (1 versus 1) is reported 432

in the top half of the table and from using all the samples, three phases being merged in 433

a new class called “the rest” (1 versus the rest) in the bottom half. This table provides F1 434

scores as a percentage in the final test of the four models. The results obtained reveal the 435

weaknesses of the LDA, MLP and PNN models in different trawl phases. The LDA and 436

MLP models struggle to differentiate samples from the steaming and setting phases, being 437

able to identify less than 33% of the samples recorded during setting. On the other hand, 438

the PNN model did not differentiate well between steaming and setting, but in this case, 439

the poor results correspond to the steaming phase, this model identifying only 22.56% of 440

the samples obtained during steaming. Similarly, the PNN provided poor results for 441
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differentiating between setting and towing, being able to identify only 14.87% of the 442

samples from the setting phase.443

444

Next, we explored the possibility of improving performance in the classification process 445

by reducing the number of categories, testing all four models, maintaining the towing and 446

steaming activities and removing the setting or hauling categories or both. Table 4 shows 447

that all the models performed better in classifying towing (F1 score) when setting and 448

hauling were eliminated and assigning the samples taken in these phases to steaming and 449

towing, respectively.450

451

We also explored the response of the four models to a reduction in the number of input 452

attributes. For this purpose, we grouped the attributes by sensor and tested all the possible 453

combinations. Table 5 shows the F1 score for towing with each of the four models with 454

all the attributes and the best response to a potential reduction in attributes grouped by 455

sensor. We can observe the substantial improvement in the LDA model after removing 456

the variables based on data from the magnetometer while the PNN model provided better 457

results using only the GPS-based attributes. Similarly, the MLP model improved 3% 458

using only the gyroscope- and GPS-based attributes, while the performance of the SVM 459

model did not improve by reducing attributes.460

461

Table 6 shows the results in the final test of the four models considering the reduction of 462

attributes and categories. The MLP model performs markedly better than the others, with 463

a hit rate of 89.69% in their positive and negative predictions concerning the towing 464

phase, a positive predictive rate of 85.11%, a towing phase sample identification rate of465

96.26%, a harmonic mean precision and recall of 90.33%, and a Kappa index with a high 466

degree of agreement of 0.83 (p<0.0001). Figure 6 shows graphically a part of the final 467

test of the models.468

469

4. Discussion 470

471
The information provided by the VMS (position, course and speed) to identify fishing 472

grounds and the activity of a fishing fleet can be improved using additional sensors as is 473

suggested in this study. In trawl fishing, precision is key to assessing haul duration and 474

track, the spatial and time distribution of the effort, and subsequently the catch per unit 475
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effort in each fishing area. Deng (2005) stated that the errors in the prediction of trawl 476

fishing increase with the time interval between VMS records and that the loss in precision 477

is relatively high with sampling intervals longer than 30 minutes. On the other hand, Mills 478

et al. (2007) indicated that a vessel’s speed alone is not a suitable criterion for identifying479

trawling activity and confirmed that the sampling frequency of the VMS is too low to 480

allow trawl tracks to be characterised, most trawls being represented by just one record 481

and some not being detected at all, the haul occurring between two records. In addition,482

for Peruvian anchoveta, Bertrand et al. (2008) reported that speed provided by VMS data483

leads to the number of fishing events being overestimated by nearly 182%. These findings 484

warrant the development and deployment of new low-cost monitoring systems, 485

complementary to VMS, that are flexible and easily upgradeable and that allow accurate486

estimation of the activities of fishing vessels.487

488

Since the deployment of the VMS in 2000, many researchers have studied how to process 489

and complement the data provided by this system to improve the management and 490

monitoring of fishing activity. For example, Szostek et al. (2017) included information 491

extracted from interviews of fishermen about their experience fishing king scallops in the 492

English Channel, while Bastardie et al. (2010) combined the data provided by the VMS 493

with information extracted from logbooks through a linking process considering the 494

degree of mismatch. In these ways, these authors were able to obtain disaggregated495

fishing effort data at a fine geographical scale. Overall, they indicate that the procedures496

they used significantly improve the delimitation of the catchment area as well as the 497

assessment of fishing effort in time and space, but to achieve this, there was a need for 498

offline processing of external data and its subsequent integration with data generated by 499

the VMS. In relation to this, the data provided by FAMIS (Galotto et al., 2020), the system 500

we propose, is at the same level as that from VMS, and hence, it is fully complementary 501

and therefore easy to integrate.502

503

The use of the FAMIS in fishing vessels would significantly improve on the use of the 504

VMS alone, as it adds movement sensors on the vessel and processing capacity to allow 505

the use of artificial intelligence algorithms to identify the activity of a vessel in situ. 506

Galotto et al. (2020) showed that standard low-cost devices such as mobile phones and 507

tablets do record different data in each trawl phase, and building on that, in this study, we 508
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demonstrate that certain models, such as MLPs or SVMs, yield classifiers that are good 509

tools for automated classification.510

511

The four types of models analysed in this study use very different classification strategies, 512

and in line with that, their classification performance varied. The results obtained with 513

samples recorded in the four trawl phases and attributes associated with the four sensors 514

indicated that SVMs and MLPs provide better results than LDA and PNNs. These results 515

are similar to those obtained by other authors. Robotham et al. (2010) found that MLPs516

and SVMs performed significantly better than PNNs or LDA, when attempting to517

distinguish between four pelagic fish species caught off the northern coast of Chile based 518

on echograms of fish shoals. Further, Rodero et al. (2012) compared the same four types 519

of models for distinguishing between four Andalusian cattle breeds based on520

morphometric variables and found that MLPs and SVMs had better classification 521

performance. This is attributable to the fact that both MLPs and SVMs associate highly 522

nonlinear discriminant functions with the input patterns. This is a result of the large523

number of variables in each sample, the physical magnitudes that they represent and the 524

complexity of the identification task, in our case, the identification of movement patterns525

of a vessel exposed to forces from the waves, wind, engine, rudder and fishing gear.526

527

The high nonlinearity of the input data is clearly reflected in the inability of LDAs to find 528

a discriminant function that distinguishes the samples from different classes. In relation 529

to this, the PNN-based model, which takes a radial approach, identifying new samples 530

based on similarities with training samples, provided the poorest results with a mean F1 531

score of just 44%. In contrast, the MLP as a universal classifier, with a single hidden layer 532

and a small number of neurons, provided an F1 score of 65.41%, being able to identify533

nearly 82% of samples in the trawl phase. Finally, the most efficient configuration of the 534

SVM model with a linear kernel finds spaces with new dimensions where it is possible to 535

separate different classes with hyperplanes, providing an acceptable mean F1 score of 536

68.21% and excellent recall of the trawl phase of over 97%. 537

538

These results significantly improve on the classification performance found by previous 539

authors based on VMS data. Gerritsen and Lordan (2011) reported that the use of vessel 540

speed as a classification criterion for fishing activity provided a low rate of false negatives541

but a very high rate of false positives in the classification (32%), only 68% of cases being542
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correctly classified. These authors highlighted that the potential reasons for these results 543

are related to the fact that a boat may travel at a speed similar to that when trawling when544

sail at a slow speed while waiting for the right tide or because of poor weather conditions, 545

among other factors.546

547

In relation to this, the four trawl phases identify periods in time when the fishing vessel 548

is involved in different activities. In each phase, the dynamic behaviour of the vessel is 549

influenced by various elements involved such as speed, course, waves, fishing gear, catch, 550

etc. These elements have a different impact at each phase. For example, the steaming551

phase ends when the boat is manoeuvring and slowing down until it positions itself where552

it is going to start trawling. After that, the setting phase starts by shooting the net; then553

the doors are set and the towing cable paid out. During the towing phase, the drag on the 554

vessel grows as the growing volume of the catch is added to the resistance of the fishing 555

gear itself. Next, in the hauling phase, the towing cable is winched in, the doors are raised,556

and finally, the fishing gear and the catch are brought on board. At the end of the haul, 557

the vessel starts a new steaming phase, manoeuvring and increasing its speed to move to 558

the next fishing spot. Given all this, the effect of the different manoeuvres within each 559

phase on the behaviour of the vessel cannot be detected by the speed data provided by the 560

VMS unless this information is complemented with movement sensor data such as those 561

recorded through FAMIS.562

563

On the one hand, homogenous behaviour of the vessel within a phase and marked changes 564

between phases should facilitate the task of classifying the samples and identifying the 565

start and end of the trawl phases. The start of setting is the most problematic time point. 566

This is because until the doors are in the water, the resistance of the nets is low and the 567

behaviour of the vessel is similar to that in the steaming phase. In contrast, the towing 568

phase starts when the fishing gear, moving at the towing speed, reaches the correct depth, 569

the cable stops being paid out and the speed of the vessel is reduced to the towing speed. 570

This change of speed enables the models to identify the first samples of the towing phase 571

and therefore the start of the real phase of fishing. Similarly, the hauling phase is easy to 572

identify, given that it starts with a reduction in the vessel’s speed to make it easier to bring 573

the fishing gear on board and finishes with the fishing gear inactive and an increase in the 574

vessel´s speed.575

576
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The results of the models analysed are significantly better when we simplify the 577

description of the activity of the fishing vessel to two phases, a common approach for578

discriminating the activity in a fishing boat when onboard observers log whether the boat 579

is “fishing” or “not fishing” as a function of whether the fishing gear is deployed in the 580

water (Chang and Yuan, 2014).581

582

By merging the phases steaming+setting and towing+hauling, we obtained F1 scores of 583

over 76% in all the models. These proposed mergers avoid the difficulty of identifying584

the samples at the start of the setting phase and considers that the vessel is fishing from 585

when it starts towing until the fishing gear is taken out of the water. This partially 586

consistent with the results of Joo et al. (2011) who used MLPs to estimate fishing events 587

in Peruvian anchoveta fisheries, based on VMS parameters and validated in-situ by 588

onboard observers. In that study, observers validated two segments of activity in the speed589

data series provided by VMS, identified as acceleration between the previous and current 590

pace (which would coincide in part with the merging of steaming+setting) and the 591

acceleration between the current and the following pace (approximately towing+hauling).592

593

In relation to the sensor systems used in this study, we should indicate that all four sensors 594

provided relevant information about changes in the vessel´s behaviour in the four trawl 595

phases (Galotto et al., 2020). The reduction in computational costs associated with 596

removing variables had a relatively small impact on the behaviour of the models. The 597

sensitivity analysis indicated that the GPS sensor is undoubtedly the device that provides 598

the most important information, given that using this device alone, the models assessed599

achieved a mean F1 score of over 61%. However, the use of information from the other600

sensors improved the behaviour of some models. For example, the MLP model was able 601

to correctly identify 96.26% of the samples recorded by the GPS+gyroscope in the towing 602

phase. Specifically, for a standard 60-minute haul, the model identified the act of fishing 603

during 57 minutes and 45 seconds, in the worst-case scenario with the false negatives 604

concentrated at the start or end of trawling. The prediction error of 2 minutes and 45 605

seconds translates to the identification of a shorter-duration hauling operation and an606

advance or delay in the start or end of the hauling. On the other hand, we should bear in 607

mind that characteristics of the boat where we performed our experiment (Miguel Oliver)608

mean that it had a higher vessel size to fishing gear ratio than that in fishing boats. This 609

suggests that the dynamics in a fishing boat may be even more affected by the fishing 610
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gear, and hence, the difference between the trawl phases will be easier to identify using 611

this system.612

613

Conclusions 614

615

The results of this work indicate that the use of the proposed device (FAMIS) on the basis 616

of a mobile device with GPS, accelerometer, gyroscope and magnetic field sensors 617

significantly improves the accuracy of current VMS systems.618

619

The 4 models analysed have shown different capacities to classify fishing activity. The 620

results obtained with samples recorded in the 4 phases of the set (steaming, setting, towing 621

and hauling) and attributes associated with the 4 sensors (Gps, accelerometer, gyroscope 622

and magnetic field) indicate that the SVM and MLP models offer better results than the 623

LDA and PNN models.624

625

On the other hand, the reduction to 2 phases (steaming and towing) considering that the 626

towing phase starts when the fishing gear reaches the correct depth and trawling speed, 627

and ends when the fishing gear is on the deck of the vessel, facilitates the task of 628

classification and substantially improves the results of the 4 models. Furthermore, the 629

reduction of the sensors involved in each model also improves the quality of their 630

predictions.631

632

In summary, the results of this work indicate that the proposed system is capable of 633

classifying the information recorded by the sensors of a mobile device during fishing 634

activity and identifying the phase of the set in which the vessel is at any given time.635

636
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